Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Med ; 12(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36769644

RESUMO

Recently, cases of fortuitous discovery of Chronic Lymphocytic Leukemia (CLL) during hospitalization for Coronavirus disease (COVID-19) have been reported. These patients did not show a monoclonal B cell expansion before COVID-19 but were diagnosed with CLL upon a sudden lymphocytosis that occurred during hospitalization. The (hyper)lymphocytosis during COVID-19 was also described in patients with overt CLL disease. Contextually, lymphocytosis is an unexpected phenomenon since it is an uncommon feature in the COVID-19 patient population, who rather tend to experience lymphopenia. Thus, lymphocytosis that arises during COVID-19 infection is a thought-provoking behavior, strikingly in contrast with that observed in non-CLL individuals. Herein, we speculate about the possible mechanisms involved with the observed phenomenon. Many of the plausible explanations might have an adverse impact on these CLL patients and further clinical and laboratory investigations might be desirable.

2.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430731

RESUMO

The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Receptores de Antígenos de Linfócitos B , Linfócitos B , Evolução Clonal , Microambiente Tumoral
3.
Front Oncol ; 12: 894419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837088

RESUMO

Chronic Lymphocytic Leukemia (CLL) is characterized by the accumulation of monoclonal CD5+ B cells with low surface immunoglobulins (IG). About 40% of CLL clones utilize quasi-identical B cell receptors, defined as stereotyped BCR. CLL-like stereotyped-IG rearrangements are present in normal B cells as a part of the public IG repertoire. In this study, we collected details on the representation and features of CLL-like stereotyped-IG in the IGH repertoire of B-cell subpopulations purified from the peripheral blood of nine healthy donors. The B-cell subpopulations were also fractioned according to the expression of surface CD5 molecules and IG light chain, IGκ and IGλ. IG rearrangements, obtained by high throughput sequencing, were scanned for the presence of CLL-like stereotyped-IG. CLL-like stereotyped-IG did not accumulate preferentially in the CD5+ B cells, nor in specific B-cell subpopulations or the CD5+ cell fraction thereof, and their distribution was not restricted to a single IG light chain type. CLL-like stereotyped-IG shared with the corresponding CLL stereotype rearrangements the IGHV mutational status. Instead, for other features such as IGHV genes and frequency, CLL stereotyped-IGs presented a CLL-like subset specific behavior which could, or could not, be consistent with CLL stereotyped-IGs. Therefore, as opposed to the immuno-phenotype, the features of the CLL stereotyped-IG repertoire suggest a CLL stereotyped subset-specific ontogeny. Overall, these findings suggest that the immune-genotype can provide essential details in tracking and defining the CLL cell of origin.

4.
Leukemia ; 35(11): 3163-3175, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33935280

RESUMO

Cancer pathogenesis involves the interplay of tumor- and microenvironment-derived stimuli. Here we focused on the influence of an immunomodulatory cell type, myeloid-derived suppressor cells (MDSCs), and their lineage-related subtypes on autologous T lymphocytes. Although MDSCs as a group correlated with an immunosuppressive Th repertoire and worse clinical course, MDSC subtypes (polymorphonuclear, PMN-MDSC, and monocytic, M-MDSCs) were often functionally discordant. In vivo, PMN-MDSCs existed in higher numbers, correlated with different Th-subsets, and more strongly associated with poor clinical course than M-MDSCs. In vitro, PMN-MDSCs were more efficient at blocking T-cell growth and promoted Th17 differentiation. Conversely, in vitro M-MDSCs varied in their ability to suppress T-cell proliferation, due to the action of TNFα, and promoted a more immunostimulatory Th compartment. Ibrutinib therapy impacted MDSCs differentially as well, since after initiating therapy, PMN-MDSC numbers progressively declined, whereas M-MDSC numbers were unaffected, leading to a set of less immunosuppressive Th cells. Consistent with this, clinical improvement based on decreasing CLL-cell numbers correlated with the decrease in PMN-MDSCs. Collectively, the data support a balance between PMN-MDSC and M-MDSC numbers and function influencing CLL disease course.


Assuntos
Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos T/imunologia , Células Th1/imunologia , Células Th2/imunologia , Microambiente Tumoral , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Monócitos/imunologia , Células Supressoras Mieloides/classificação , Células Supressoras Mieloides/patologia
5.
Mol Med ; 26(1): 25, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156260

RESUMO

BACKGROUND: B cell receptor Immunoglobulin (BcR IG) repertoire of Chronic Lymphocytic Leukemia (CLL) is characterized by the expression of quasi-identical BcR IG. These are observed in approximately 30% of patients, defined as stereotyped receptors and subdivided into subsets based on specific VH CDR3 aa motifs and phylogenetically related IGHV genes. Although relevant to CLL ontogeny, the distribution of CLL-biased stereotyped immunoglobulin rearrangements (CBS-IG) in normal B cells has not been so far specifically addressed using modern sequencing technologies. Here, we have investigated the presence of CBS-IG in splenic B cell subpopulations (s-BCS) and in CD5+ and CD5- B cells from the spleen and peripheral blood (PB). METHODS: Fractionation of splenic B cells into 9 different B cell subsets and that of spleen and PB into CD5+ and CD5- cells were carried out by FACS sorting. cDNA sequences of BcR IG gene rearrangements were obtained by NGS. Identification of amino acidic motifs typical of CLL stereotyped subsets was carried out on IGHV1-carrying gene sequences and statistical evaluation has been subsequently performed to assess stereotypes distribution. RESULTS: CBS-IG represented the 0.26% average of IGHV1 genes expressing sequences, were detected in all of the BCS investigated. CBS-IG were more abundant in splenic and circulating CD5+ B (0.57%) cells compared to CD5- B cells (0.17%). In all instances, most CBS IG did not exhibit somatic hypermutation similar to CLL stereotyped receptors. However, compared to CLL, they exhibited a different CLL subset distribution and a broader utilization of the genes of the IGHV1 family. CONCLUSIONS: CBS-IG receptors appear to represent a part of the "public" BcR repertoire in normal B cells. This repertoire is observed in all BCS excluding the hypothesis that CLL stereotyped BcR accumulate in a specific B cell subset, potentially capable of originating a leukemic clone. The different relative representation of CBS-IG in normal B cell subgroups suggests the requirement for additional selective processes before a full transformation into CLL is achieved.


Assuntos
Subpopulações de Linfócitos B/imunologia , Rearranjo Gênico do Linfócito B , Receptores de Antígenos de Linfócitos B/genética , Análise de Sequência de DNA/métodos , Baço/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD5/metabolismo , Separação Celular , Citometria de Fluxo , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenômenos Imunogenéticos , Masculino , Receptores de Antígenos de Linfócitos B/metabolismo , Hipermutação Somática de Imunoglobulina , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 117(8): 4320-4327, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047037

RESUMO

The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21-derived heavy chains (HCs) with IGLV3-21-derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR-BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.


Assuntos
Cadeias lambda de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos B/imunologia , Estudos de Coortes , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Predisposição Genética para Doença , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias lambda de Imunoglobulina/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Mutação Puntual , Receptores de Antígenos de Linfócitos B/genética
7.
Oncotarget ; 6(26): 22624-40, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26265439

RESUMO

B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Metformina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA